Ag-Modified In2O3 Nanoparticles for Highly Sensitive and Selective Ethanol Alarming
نویسندگان
چکیده
Pure In₂O₃ nanoparticles are prepared by a facile precipitation method and are further modified by Ag. The synthesized samples are characterized by scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, Raman and UV-Vis spectra. The results show the successful heterojunction formation between Ag and In₂O₃. Gas sensing property measurements show that the 5 mol % Ag-modified In₂O₃ sensor has the response of 67 to 50 ppm ethanol, and fast response and recovery time of 22.3 and 11.7 s. The response is over one magnitude higher than that of pure In₂O₃, which can be attributed to the enhanced catalytic activity of Ag-modified In₂O₃ as compared with the pure one. The mechanism of the gas sensor can be explained by the spillover effect of Ag, which enhances the oxygen adsorption onto the surface of In₂O₃ and thus give rise to the higher activity and larger surface barrier height.
منابع مشابه
Ag-Modified In2O3/ZnO Nanobundles with High Formaldehyde Gas-Sensing Performance
Ag-modified In2O3/ZnO bundles with micro/nano porous structures have been designed and synthesized with by hydrothermal method continuing with dehydration process. Each bundle consists of nanoparticles, where nanogaps of 10-30 nm are present between the nanoparticles, leading to a porous structure. This porous structure brings high surface area and fast gas diffusion, enhancing the gas sensitiv...
متن کاملA sensitive method for electrochemical determination of molybdenum (VI) in plant foodstuff samples using Ni0.5Zn0.5Fe2O4 nanocomposite modified carbon paste electrode
In the present study, a new chemically modified carbon paste electrode (CPE) is constructed for rapid, accurate, simple, highly sensitive, and selective determination of Mo (VI) using differential pulse voltammetry. The electrode was prepared using magnetic nickel zinc ferrite nanocomposite (Ni0.5Zn0.5Fe2O4), as the modifier in CPE (Ni0.5Zn0.5Fe2O4/CPE). Mo (VI) was determined after preconcentr...
متن کاملHighly Sensitive Amperometric Sensor Based on Gold Nanoparticles Polyaniline Electrochemically Reduced Graphene Oxide Nanocomposite for Detection of Nitric Oxide
A sensitive electrochemical sensor was fabricated for selective detection of nitric oxide (NO) based on electrochemically reduced graphene (ErGO)-polyaniline (PANI)-gold nanoparticles (AuNPs) nanocomposite. It was coated on a gold (Au) electrode through stepwise electrodeposition to form AuNPs-PANI-ErGO/Au electrode. The AuNPs-PANI-rGO nanocomposite was characterized by Field Emission Scanning ...
متن کاملFabrication of an Electrochemical Sensor Based on a New Nano-ion Imprinted Polymer for Highly Selective and Sensitive Determination of Molybdate
In this work a new chemically modified carbon paste electrode was constructed for accurate, simple, sensitive and selective determination of molybdenum (VI) ions. The results of modified electrode by an ion imprinted polymer were compared with those obtained with carbon paste electrode. The results showed the stripping peak currents had a dramatic increase at the modified electrode. Under the o...
متن کاملEthanol electrooxidation on the Co@Pt core-shell nanoparticles modified carbon-ceramic electrode in acidic and alkaline media
In this study, the electrocatalytic activity of the Co@Pt core-shell nanoparticles toward the ethanol oxidation reaction has been investigated by cyclic voltammetry and chronoamperometry in acidic and alkaline media in details. The physicochemical data obtained in alkaline solution are compared to those in acidic solution. The obtained results demonstrate that while in the both media Co@Pt core...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 17 شماره
صفحات -
تاریخ انتشار 2017